\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Let $\rho:[a, b] \rightarrow \mathbb{R}^{2}$ be a plane curve parametrized in polar coordinates by $\rho=\rho(\theta)$. Prove that the curvature κ of ρ can be expressed as

$$
\kappa(\theta)=\frac{2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}+\rho^{2}}{\left[\left(\rho^{\prime}\right)^{2}+\rho^{2}\right]^{3 / 2}}
$$

2. Show that the knowledge of the normal vector $n(s)$ of a curve α, with nonzero torsion everywhere, determines the curvature $\kappa(s)$ and the torsion $\tau(s)$ of α.
3. Assume a regular parametrized curve α has the property that all its tangent lines pass through a fixed point. Prove that the trace (range/image) of α is a (segment of a) straight line. Does the conclusion still hold if α is not regular?
4. Prove that a circle of radius r has constant curvature $\kappa=\frac{1}{r}$.
5. Let T^{2} be the torus and have the following parametrization:

$$
x(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u), \quad 0<u<2 \pi, 0<v<2 \pi
$$

for a fixed a and r. Compute the area of the torus.
6. Suppose S is a surface of revolution parametrized by the following

$$
x(u, v)=(u, f(u) \sin v, f(u) \cos v), \quad u \in[a, b], v \in[0,2 \pi],
$$

where f and is a nonnegative differentiable function. Prove that the area A of S is given by:

$$
A=2 \pi \int_{a}^{b} f(u) \sqrt{1+\left(f^{\prime}(u)\right)^{2}} d u
$$

7. Suppose S is a surface of revolution parametrized by the following

$$
x(u, v)=(f(v) \cos u, f(v) \sin u, g(v)), \quad u \in(0,2 \pi), v \in[a, b],
$$

where f and g are differentiable functions and $f>0$. Prove that S is a regular surface and compute its first fundamental form.
8. The sphere, S^{2}, can be parametrized by the following

$$
x(u, v)=(\sin v \cos u, \sin v \sin u, \cos v), \quad u \in(0,2 \pi), v \in(0, \pi) .
$$

Prove that S^{2} is a regular surface and compute its first fundamental form.
9. Let $C \subset S$ be a regular curve on a surface S with Gaussian curvature $K>0$. Show that the curvature κ of C at p satifies

$$
|\kappa| \geq \min \left\{\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right\},
$$

where κ_{1} and κ_{2} are the principal curvatures of S at p.

